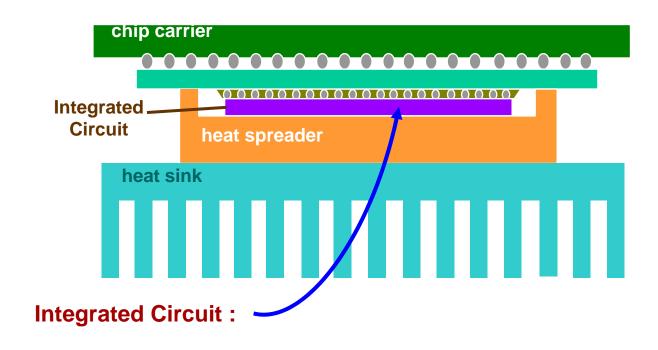
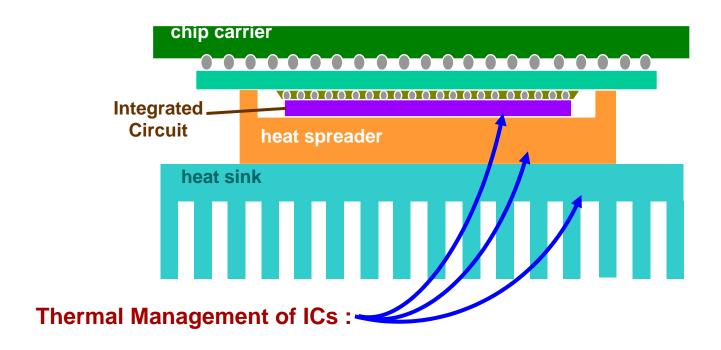
Opportunities in the Mechanical Parts of the System

Dr. Thomas Kenny DARPA/MTO

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 06 MAR 2007		2. REPORT TYPE N/A		3. DATES COVERED -	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER				
Opportunities in th	5b. GRANT NUMBER				
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) DARPA				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
	otes ems Technology Syn original document	-	•	on March 5	-7, 2007.
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	OF PAGES 11	RESPONSIBLE PERSON


Report Documentation Page

Form Approved OMB No. 0704-0188



- 40+years of innovation in Materials, Designs, Architectures, Interfaces, Manufacturing...
- Mankind's Most Advanced Technological Achievement
- Beneficiary of many DARPA investments over the years

Microelectronics Packaging Today

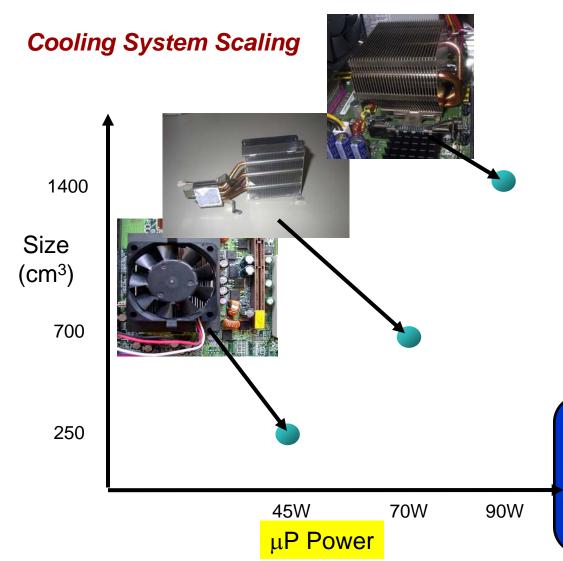
- Materials set includes Grease, Copper, Aluminum
- Relatively few insertions of modern technology
- Few investments by DARPA
- Size, Weight, Cost, Performance of Thermal Management Technology is becoming a significant factor in Systems

Microelectronics Packaging Today

Heat Pipes woven through base and fins to provide efficient heat transport to full area

4"x4"x3", 400 gm heatsink for thermal management of 90W Intel Microprocessor

Spring-Loaded Clamps for constant pressure on back of die, and minimize torque on interconnect


Size, weight, performance, reliability of thermal management can dominate DOD systems.

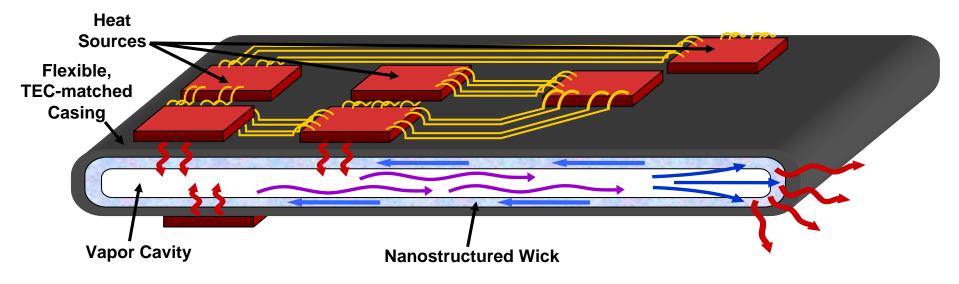
Microelectronics Packaging Today

Scaling driven by :

- Increases in power density
- Thermal transport through grease
- Wicking/transport in heat pipes
- Fin thermal conduction
- Convective Heat transfer to air.

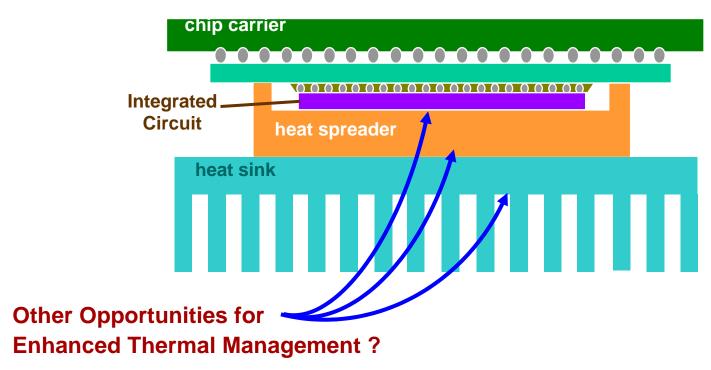
Recent industry transition to multicore is a "surrender" to this thermal barrier.

DOD systems suffer from same scaling. Cooling of computers, radar arrays, optics, instruments, engines - all limited by 50 year-old cooling technology.


It is time to bring high-technology, modern materials, nano-engineered interfaces, and adaptive structures to this problem. Possible benefits throughout DOD.

Example Opportunity

Technology Vision: A new 2-D, thin, lightweight MCM substrate incorporating fluids, and nanostructured materials to achieve vastly superior thermal conduction & possessing all mechanical properties necessary for hard-mounting ICs.



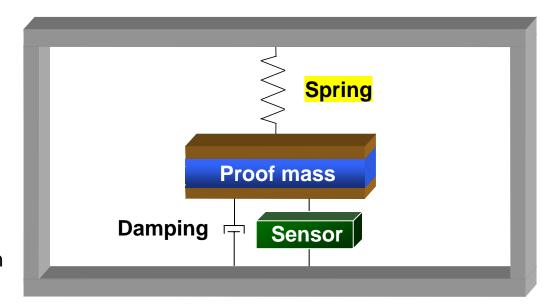
- Extreme lateral thermal conduction, 100X above current MCM substrates, capable of up to 1000X above Diamond
- ➤ Large 2-D area, <1 mm thick
- Nanostructured wick for enhanced heat transfer and fluid transport
- Structural, flexible, thin, & light-weight materials that match the TEC of Si, GaAs, or GaN
- > 2-phase heat transfer to eliminate load-driven thermal non-uniformity across substrate

Other Opportunities?

- Optimized Micro/Nano Composites for Thermal Interfaces
- Package-Integrated Pumped Fluid Cooling Technologies
- Engineered Surfaces for Enhanced Heat Transfer (Solid→ Liquid, Liquid→Air)

There are opportunities for significant performance enhancements throughout thermal systems.

Turning Constants into Variables



Typical Inertial Instrument:

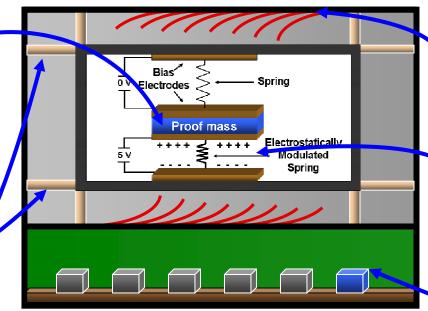
- Fixed Mass
- Fixed Suspension

Performance enhancements achieved through:

- Improvements in sensor
- Accurate temperature compensation
- Expensive packaging

Present Technologies for State of Art Inertial Navigation:

- Mechanical Instruments with Electronics in Package and Temperature Control of System -> fragile, large, high-power, expensive
- All important parameters are static quantities, sensitivity modulation not used
- Advanced nonlinear dynamics, parametric amplification, not used in these systems



Adaptive Mechanical Interfaces

Adjustable Stiffness for Insertion, Q-control For Adjustment of Sensor for Application, Events

Mechanical Suspension and Thermal Isolation For miniaturization, low-power, and operation in harsh environments

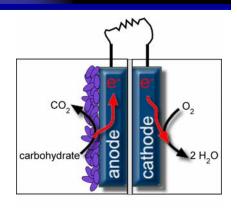
Variable Thermal Resistors for passive, zero-power thermal regulation of sensor

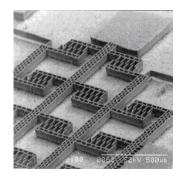
Tuned Dynamics for Parametric Amplification or Internal Chopping Significant reductions in 1/F noise, drift

Conventional MCM
with Thermometer
for secondary temperature
Compensation as needed

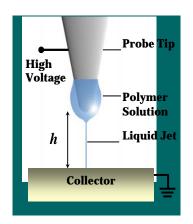

Opportunities for Improvement through Variable Mechanics:

- Utilize nonlinear dynamics to tune performance, amplify, and operate in variable scenario
- Utilize MEMS for device, package, thermal management, dynamic management
- Deliver complete instruments with enhanced performance and smaller size, weight, power,...

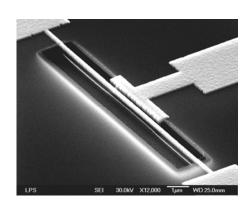



Other Areas of Interest

Tip-Based Nanofabrication Fields, Fluxes, Gradients that can only exist if confined to nm-scale Hand-Held Energy
Generation
Convert Cellulose,
other available
biomaterials into
fuel for energy
generation



Metal Microstructures
Leverage unique
qualities of metals
(Titanium, Stainless) for
harsh-environment
sensing


Neutron Detection
MicroDroplet Chambers
and geiger counters for
miniature detectors

Electrospun Polymer Fibers
High-strength nm-scale
fibers with aligned
molecules and nanocomposite additives

Quantum Mechanical
Detection
Phonon confinement
and energy
manipulation for
sensing, processing

Mechanical Opportunities

Summary

- There are performance-enhancement opportunities on the mechanical side of many systems
- 20+ years of research on MEMS, Nanofabrication, and engineered materials provides many interesting possibilities for impact on thermal and mechanical interfaces
- These situations are ideal opportunities
- Other interests emerging through discussions with labs and users